
by Steve Norris

46 R O B O T M A G A Z I N E J A N U A R Y / F E B R U A R Y 2 0 1 1 47

THE CRUSTCRAWLER NOMAD HD ROVER

If you missed the last issue here is a quick review of the Nomad
HD Rover. The Nomad is constructed from laser cut .063 gauge
(sides and top plate) and .090 gauge (bottom plate) 5052 Type II
anodized aluminum in gun barrel gray. Fully configured the
Nomad weighs in at 12.6 pounds and has two grab handles
mounted on the top deck for easy pickup. The lower inside and
outer upper deck both measure 18 inches long and 14 inches
wide with a body depth of 4 inches. As you will see, this leaves
plenty of room for electronics, batteries, and can easily accom-
modate a small laptop computer. One unique feature of the
Nomad is its “Robotic Arm Deck” which will accept any of
CrustCrawler’s robotic arms including the SG5-UT, SG6-UT,
and AX-12 Smart Arm.

You can purchase the Nomad in a number of configura-
tions bundled with the Parallax Motor Mount Kit, the Parallax
Caster Kit and robotic arm of your choice. The kits do not
include microcontrollers, motor controllers, or sensors. These
all will need to be purchased separately depending on your
configuration.

EMERGENT BEHAVIOR

As I mentioned before, the primary reason for moving the
Nomad to a PC platform is to explore a concept called emergent
behavior. Emergence is the result of an interconnected system of
simple entities that self-organizes into an intelligent higher-level
behavior that is greater than the sum of its parts. In these sys-
tems agents residing on a lower level produce behavior that lies
on a level above. Although we are not generally aware of it, we
see emergence in our everyday lives: Ants organize into
colonies, birds organize into flocks, and people organize into
neighborhoods and cities. None of these organizations have any
central control but instead their structure emerges from the sim-

ple interaction of their respective
participants.

Robotic and software engineers
alike are now discovering the
power of emergent behavior.
Using behavior-based program-
ming robots can be built that
exploit the emergence model that
results in seemingly highly intelli-
gent behavior.

BEHAVIOR-BASED

ARCHITECTURE

The behavior-based software
architecture uses a collection of
behavior modules that get input
from the robot’s sensors. The
behavior processes this sensor
data and determines if it should trigger and send a request to
the robot’s actuators. Each behavior is called sequentially
based on its priority. If a behavior is triggered it will place a
request to the robot’s actuators into a central queue. After all
the behaviors have been executed an arbitration process then
decides which behavior request in the queue will be sent on to
the robot’s actuators. The decision is based on the behavior’s
priority. The highest priority behavior requesting access to
the actuators will win and override all other lower priority
requests.

As an example let’s say we have created a blocked behav-
ior and assigned it the highest priority. This behavior would
probably use a forward facing ultrasonic sensor as its input
and, based on the measured distance, determine if the path
ahead is blocked. If so it would trigger and request a simple

n the last issue I reviewed the
new CrustCrawler Nomad HD
Rover and presented my

implementation using the
Parallax Propeller chip as the pri-
mary controller. In this article we
will expand on the original plat-
form and give the Nomad even
greater capabilities. My original
plan was to add additional sen-
sors for beacon and line naviga-
tion as well as a video camera.
But for now I will not go down
that path; instead I will take a
detour and expand the Nomad’s
computational abilities by giving
it a bigger “brain.” And with this
bigger brain we will explore the
fascinating world of emergent
behavior using behavior-based
programming.

Despite evidence to the con-
trary I do not spend all my time
building robots. During the day
I’m a mild-mannered software
engineer developing health care
applications based on the
Microsoft Windows platform. The
primary language I use is C# (pro-
nounced C-sharp) which is one of
the multitudes of programming
languages (including C++, Visual
Basic, J#, F#, etc) available in the
Microsoft .NET platform.

The .NET platform includes a
Common Language Runtime
(CLR) which provides an abstrac-
tion layer over the Windows
operating system, a large collec-
tion of pre-built base class
libraries for common low-level
programming tasks and a power-
ful development environment
called Visual Studio. Given my
familiarity with this platform it
seemed only natural (and
inevitable) that I use these tools to
build a robot application running
on a Windows-based PC.

TheCrustCrawler Nomad HD Rover
I
Exploring emergent behavior

PHOTOS BY STEVE NORRIS

The direct
connection
to the
Nomad
using a
USB port.

A bungee cord holds
the laptop in place.

PART 2

Hardware
Configuration
options.

Laptop mounted on the
Nomad running EmergeRT.

“move back 12 inches” instruction. The blocked behavior has been
given the highest priority and will override all the other behaviors
and have its move request sent on to the motor drive.

HARDWARE CONFIGURATION

Looking at the hardware configuration diagram you can see that I
use one of two basic hardware configurations. The first option uses a
remote PC connected to the robot via a wireless link. This configura-
tion allows the use of a powerful desktop PC without having to
physically mount it on the robot. The wireless link is implemented
using a pair of XBee transceivers. The PC is connected to one of the
XBee modules using the Parallax XBee USB Adapter Board and a
USB A to mini B cable. The adapter board provides an easy interface
to configure the XBee module and it converts the XBee 2mm pin
spacing to more useable 0.100-inch pin spacing.

As an added bonus the board also has four cool status indicator
LEDs for Power, RSSI, Associate and Mode. The other half of the
XBee pair is installed within the Nomad and is directly wired to the
Propeller Proto Board using the Parallax XBee Adapter Board. Like
the USB version this adapter converts the pin spacing but does not
have the USB hardware.

The second hardware configuration option involves mounting a
laptop directly on the back of the Nomad. Considering the size and
cost of small laptops (sometimes referred to as Netbooks) this makes
this option quite viable. I’ve been using the Acer Aspire One which
comes with Windows 7 Starter, an Intel Atom processor, Wi-Fi, and a
built in webcam and costs around $280. I connected the laptop to the
Propeller Proto Board using one of laptop’s three USB ports and a
Parallax Prop Plug. As an alternative I could have used the USB ver-
sion of the Propeller Proto Board which has the Prop Plug built into
it. The primary advantage of using this “laptop onboard” configura-
tion is the elimination of the XBee transceivers although there is the
added expense of weight, power and some usability due to the small
keyboard and screen.

I mounted the laptop to the top of the Nomad using four stand-
offs and a small sheet of Plexiglas. I install several inverted rubber
feet to the sheet to hold the laptop steady and absorb any shock. A

short bungee cord straps the laptop down onto the rubber feet and
Plexiglas sheet.

In both options the Propeller is programmed with the same
remote control application that receives and processes commands
and returns sensor telemetry. It uses a simple serial communications
protocol that I designed to be easy to implement and use. All packets
start with a three character header and end with an ASCII Return
character. Telemetry data returned from the robot is formatted in a
similar manner.

THE EMERGE FRAMEWORK

Now that we understand the behavior-based architecture and the
hardware configuration let’s look at the Emerge Framework shown
in the accompanying diagram. The Emerge Framework (EmergeRF)
is a .NET software library that implements (in C#) the infrastructure
needed to construct behavior-based robotic applications. The library
contains all the class libraries and methods needed to support the
acquisition of telemetry data, the execution of behaviors, and the
arbitration of requests to be sent to the robot’s actuators (motors). By
using this framework, even a novice .NET programmer can easily
build and test behaviors. If you are not familiar with C# or .NET
programming and would like to learn more look at the list of recom-
mended books at the end of this article.

The top level of the framework is the RobotBrain class. The
Emerge Runtime (more on the Runtime later) creates an instance of
this class which then loads all the implemented behaviors. All
behavior implementations must be derived from the base Behavior
class. The behaviors for a particular robot are compiled as a set and
placed into a single .NET assembly. The behaviors are loaded at run-
time and their location is specified in a RobotSpecification class that
you setup for each robot you wish to support.

There are three major and concurrent tasks (threads) that run in
the framework. The Sensor Task handles the requesting and receiv-
ing of sensor data from the robot. The RobotSpecification object
contains the definition of how this data is formatted since it will
most likely vary with each robot. There are currently two different
communications links that the Sensor Task could use and both are

derived from the CommLink class. The
first is the serial communications link
(SerialComm) is used for direct and
XBee connections. The other (and not
implemented yet) is used for TCP based
communications.

The Behavior Task handles the exe-
cution of the loaded behavior set and
then arbitrates the request queue. The
behaviors are executed in priority order
and are passed the current sensor read-
ings, the request and name of the last
winning behavior. The behavior returns
its request (if any) which is placed in the
request queue. This makes arbitration
process trivial; simply grab the first
request in the queue. Note that all the
behaviors are executed even if a higher
priority behavior has made a request.
This allows all the behaviors equal time
and the ability to update their state
based on the current sensor readings.

The last of the tasks is the User
Interface (UI) Task. This task handles
the user interface in the runtime envi-

THE CRUSTCRAWLER NOMAD HD ROVER

48 R O B O T M A G A Z I N E J A N U A R Y / F E B R U A R Y 2 0 1 1 49

ronment which we
will discuss next.

THE EMERGE

RUNTIME

The Emerge Runtime
is both the user inter-
face for the robot and
the environment in
which the framework
runs. From the File
menu a user selects
the robot configura-
tion that they wish to
use. This file is used
to initialize a
RobotSpecification
object which is then
passed to the
RobotBrain instance.
The user interface
interacts with the RobotBrain object and displays “brain” activity
in one of four panels. The left most panel is the activity log.
Behaviors have the ability to post messages to this running log
which can be used to display internal status or error information.
The top center panel displays the current sensors reading
received over the communications link. In conjunction the bottom
panel is a plotter which can graph any or all the sensors values
received. The top right panel displays the names of all the loaded
behaviors and indicates (in green) the last arbitrated winning
behavior.

The toolbar located at the top allows a user to start, stop and
pause the framework. In addition there is a Remote Control but-
ton which disables the behaviors and allows manual control of
the robot. This is very useful in emergency situations where the
“emergent behavior” is not exactly what you wanted or expected.

THE CYBER BEHAVIOR AND STUDIO

The CyBeR Behavior really deserves an article all by itself. Its name is
derived from the underlying technology which is called Case-Based
Reasoning (CBR). Case-Based Reasoning uses the concept of match-
ing a case against a given situation. The CBR engine moves through
the case tree trying to match cases against a set of provided feature
values. In a robotics application the features are actually sensor read-
ings. When a case is matched (triggered) an action associated with the
case is sent to the arbitration process just like any other behavior.

Using the CyBeR Behavior allows non-programmer to build
behaviors but not have to implement them in a programming lan-
guage like C#. Instead the user defines the
trigger and action of a behavior using a
graphical design tool call the CyBeR Studio.
The Studio allows cases to be created and
linked to each other in a tree like structure.
This structure determines the order in which
they will be matched. Each case has a set of
matching rules that are defined using a sim-
ple set of operators like “equal to” or “greater
than”. The Studio also supports the testing of
behaviors by graphically displaying the exe-
cution of case matches on the screen. Colors
are used to note which cases matched and
which failed.

THE FUTURE

I think that the CyBeR system is an interesting way to think about
and construct behavior-based robotic applications. It is my plan to
continue and grow both the Emerge Framework and CyBeR Studio.
If there is enough interest, and I hope there is, I plan to start an
Open Source project to share this platform with my fellow robotics
enthusiasts.

READING LIST

Illustrated C# by Daniel Solis
Pro C# and the .NET Platform Fifth Edition by
Bill Wagner

Links
Acer Aspire One Netbook, http://us.acer.com

CrustCrawler, www.crustcrawler.com, (480) 577-5557

Microsoft Visual Studio,
www.microsoft.com/express/downloads/

Parallax, www.parallax.com, (888) 512-1024

Steve Norris website, www.norrislabs.com

For more information, please see our source guide on
page 89.

Screen shot of the CyBeR Studio.

The Emerge Runtime
(EmergeRT).

Emerge
Framework
(EmergeRF)
Architecture.

Mona loves to settle into a warm laptop!

